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Subsequent to Robson’s initial studies on bi- 
nucleating Schiff base ligands derived from 2,6- 
diformyl+methylphenol [ 1 ] there has been much 
interest in the potential use of such compounds as 
small molecule models for dicopper(II)-biosites 
such as oxyhaemocyanin [2]. The relative rigidity of 
the ligand framework, imposed by the diimino- 
phenolic head-unit, limits the copper-copper separa- 
tion CQ. 3.0 A [3], as compared to 3.6 A in the 
biosites [4], and so attempts to define more flexible 
systems have been made [ .5,6]. 
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The nature of the endogenous bridge believed to 
exist in oxyhaemocyanin 1 is conjectural [2,4]; 
alkoxy-(seryl, threonyl) and aryloxy-(tyrosinyl) 
groups have been proposed as plausible candidates 
[6]. The incorporation of 1,5-diaminopentan-3-ol and 
2,6-bis(aminomethyl)4-nitrophenol into the back- 
bone of acyclic, dinucleating Schiff bases derived 
from salicylaldehyde (salH) and pentane-2,4-dione 
(acacH)‘. L1-L4, provides a means of comparing the 
nature of alkoxy- and aryloxy-endogenous bridges in 
closely related molecules. 

Treatment of the Schiff bases with copper(H) 
ethanoate in the presence of a bridging ligand X, 
(X = OH, OCHY, NY, p-NOZC6H40=, pyrazolate), 
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(X = OH, OCH,, N3, P-NO~C~H~O--, pyrazolate), 
results in the formation of complexes of the type 
[Cu,(L)X] (2, 3) in which the Schiff base has been 
fully deprotonated thus providing an endogenous 
bridge between the copper(I1) centres. The variation 
in X allows for the incorporation of g-1,1-, p-1,2- or 
p-1,3- exogenous bridging units. 
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The complexes were characterised by elemental 
analysis, IR, UV-Vis, and, in the case of those 
derived from Lq, MS. Although it has been proposed 
that the azide stretching frequency (v sym) ca. 
1300 cm-’ can be used to differentiate between the 
p-1,1- and p-1,3- bridging modes of that anion [8] it 
has not been possible to do so in this study as the 
spectra are dominated, in this region, by absorptions 
common to the series [Cu,(L)X]. The pyrazolate 
complexes exhibit absorptions at 1060 and 770 cm-’ 
ascribable to the CH out-of-plane deformation of the 
heterocyclic ring and implying a p-1,2- coordination 
mode for this exogenous bridge [9]. A band at ca. 
2800 cm-’ in the methoxy-bridged species has been 
ascribed to the VCH of the methoxy-group; this may 
be verified by comparison with the corresponding 
deuterated complex [Cu2(L)OCD,] in which the 
band is shifted to CQ. 2050 cm-’ (CH/CD = 1.37). 

Magnetic parameters for the azido- and pyrazolato- 
complexes are given in Table I. The general features 
emerging are that the J values are more negative, i.e. 
greater antiferromagnetic coupling arises, when the 
exogenous p-1,2- pyrazolate bridge is present, and 

TABLE I. Magnetic Data 

Compounda -21 (cm-‘) g Monomer (%) Reference 

CUING 230 1.99 1.2 this work 

CUING 246 2.04 3.5 this work 

Cu2(L4)N3 350 (81%) 1.92 this work 

49 (19%) 1.86 

Cu2(L2)pyz 394 2.10 1.6 this work 

cuZ(L4)pyz 782 2.31 this work 

C~z(L3)py~ diamag 12 

cuZ(L4)pyz 7 16 2.00 1.3 12 

Cu2(Ls)PYz 457 2.20 5 

apyz = pyrazolate, Ls = 2,6-bis(salicylideneamino)methyl)4- 
methylphenol. 
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also when the endogenous bridge contains the more 
flexible alkoxy-chain. One possible explanation for 
the latter is that the extent of anti-ferromagnetic 
coupling between metal centres via bridging ligands 
decreases as any electron density is removed from the 
bridging atoms [IO]. Such a system would arise in 
complexes derived from Lr and L where the bridging 
phenolate contains an electron-withdrawing substit- 
uent in the para-position. 

The flexible nature of the ligand, La, is demon- 
strated in the X-ray crystal structures of the com- 
pounds 3 (X = OH and X = pyrazolate) (Figs. 1 and 
2). The ligand can accommodate both p-1 ,I- and 
p-1,2- bridges and the Cu-Cu separation increases 
from 3.OOA in 3 (X=OH) to 3.35A in 3 (X= 
pyrazolate). In the pyrazolate complex there are two 
discrete molecules in the unit cell; the average 
Cu-0-Cu angle is 119”. the average folding angle 
(4) [ll] is 36.8” and the copper atoms have clear 
tetrahedral distortions. A recent communication 
concerning copper(H) complexes of binucleating 
ligands derived from 1 ,n-diamino-alcohols suggests 
that severe bending of the ligand with accompany- 
ing reduction of the Cu-0-Cu angle is noted where a 
trend towards ferromagnetism occurs [ 1 I]. Our 
results contrast with these observations but parallel 
those reported by Mazurek et al. [ 121 who, in related 
systems, have noted that it is a distortion from 
trigonal-planar towards pyramidal bonding around 
the endogenous-0 that leads to a less negative J value. 
The sum of the three angles around the endogenous- 
0 in 3 (X = pyrazolate) is 358”, indicative of a 
trigonaliy based geometry, and the high J value 
recorded for this compound is in accord with the 
above concept. 

The best fit for the magnetic data concerning 
CuZ(L4)N3 is obtained by considering the sample to 
be a mixture of two species; the reproducibility of 
the data was confirmed by using different samples. 
For the major component (-81%) 2J= -3.50 cm-’ 
and g = 1.92; for the minor component (-19%), 2J = 
-49 cm-’ and g = 1.86. Kahn et al. have established 
that in p-azido complexes an azido-group which 
bridges two copper atoms in an end-on (p-1 ,l-) 
fashion favours a triplet ground state (ferromagnetic 
interaction) whereas an end-to-end (J.J-1,3-) mode 

Fig. 1. Molecular structure of 3 (X = OH). 

Fig. 2. Molecular structure of 3 (X = pyrazolate). 

leads to a singlet ground state (antiferromagnetic 
interaction) [ 131. In a structurally defined binuclear 
copper(H) complex derived from 4, and having 
endogenous phenoxo- and exogenous (p-1 ,l -)-azido 
bridges an observed 21 value of -34.8 cm-’ has been 
interpreted to show a weakened antiferromagnetic 
coupling between the metal centres [14]. The p-1,1- 
azido bridge is believed to exert a ferromagnetic 
stabilisation strong enough to lower the overall anti- 
ferromagnetic coupling to the value shown. Since no 
substantial lowering of 2J is noted for Cu2(Lr)Ns. 
Cu2(b)N3 or the major component of Cu,(L,)N3 a 
/.J-1,3-azido bridge is proposed as present in these 
molecules. For the minor component of CuZ(L4)N3 
a p-1 ,I-azido bridge would exert a ferromagnetic 
contribution producing the 21 value given in Table I. 
The ability of [Cua(L,)] to host either p-1,1- or 
p-1,3- bridges in the azide complex is a further 
indication of the enhanced flexibility of the systems. 
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