Observations on the Structure and Magnetic Roperties of Dinuclear Copper(U) Complexes Derived from Flexible Dhmcleating Schiff Base Ligands

HARRY ADAMS, NEIL A. BAILEY, DAVID E. FENTON*, RICHARD MOODY

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

and JEAN MARC LATOUR

DRF-CH (UA 3211, C.E.N.G., F 38041. Grenoble, France

(Received July 22, 1986)

Subsequent to Robson's initial studies on binucleating Schiff base ligands derived from 2,6 diformyl+methylphenol [**1]** there has been much interest in the potential use of such compounds as small molecule models for dicopper(II)-biosites such as oxyhaemocyanin [2]. The relative rigidity of the ligand framework, imposed by the diiminophenolic head-unit, limits the copper-copper separation $ca. 3.0 \text{ Å}$ [3], as compared to 3.6 Å in the biosites [4], and so attempts to define more flexible systems have been made $[5,6]$.

The nature of the endogenous bridge believed to exist in oxyhaemocyanin **1** is conjectural [2,4]; alkoxy-(seryl, threonyl) and aryloxy-(tyrosinyl) groups have been proposed as plausible candidates [6]. The incorporation of 1,5-diaminopentan-3-ol and 2,6-bis(aminomethyl)4-nitrophenol into the backbone of acyclic, dinucleating Schiff bases derived from salicylaldehyde (salH) and pentane-2,4-dione (acacH)⁷, L_1-L_4 , provides a means of comparing the nature of alkoxy- and aryloxy-endogenous bridges in closely related molecules.

Treatment of the Schiff bases with copper(H) ethanoate in the presence of a bridging ligand X, $(X = OH^{-}$, OCH₃, N₃, p-NO₂C₆H₄O⁻, pyrazolate),

Treatment of the Schiff bases with copper(I1) ethanoate in the presence of a bridging ligand X,

*Author to whom correspondence should be addressed.

 $(X = OH^{-}, OCH_{3}^{-}, N_{3}^{-}, p\text{-}NO_{2}C_{6}H_{4}O^{-}, pyrazolate),$ results in the formation of complexes of the type $\lbrack Cu_2(L)X \rbrack$ (2, 3) in which the Schiff base has been fully deprotonated thus providing an endogenous bridge between the copper(I1) centres. The variation in X allows for the incorporation of μ -1,1-, μ -1,2- or μ -1,3- exogenous bridging units.

The complexes were characterised by elemental analysis, IR, UV-Vis, and, in the case of those derived from $L₄$, MS. Although it has been proposed that the azide stretching frequency $(\nu \text{ sym})$ ca. 1300 cm^{-1} can be used to differentiate between the μ -1,1- and μ -1,3- bridging modes of that anion [8] it has not been possible to do so in this study as the spectra are dominated, in this region, by absorptions common to the series $\lbrack Cu_2(L)X \rbrack$. The pyrazolate complexes exhibit absorptions at 1060 and 770 cm^{-1} ascribable to the CH out-of-plane deformation of the heterocyclic ring and implying a μ -1,2- coordination mode for this exogenous bridge [9]. A band at ca. 2800 cm^{-1} in the methoxy-bridged species has been ascribed to the ν CH of the methoxy-group; this may be verified by comparison with the corresponding deuterated complex $\left[Cu_2(L)OCD_3 \right]$ in which the band is shifted to *ca*. 2050 cm⁻¹ (CH/CD = 1.37).

Magnetic parameters for the azido- and pyrazolatocomplexes are given in Table I. The general features emerging are that the J values are more negative, *i.e.* greater antiferromagnetic coupling arises, when the exogenous μ -1,2- pyrazolate bridge is present, and

TABLE I. Magnetic Data

	Compound ^a $-2J$ (cm ⁻¹) g		Monomer (%) Reference	
$Cu2(L1)N3$	230	1.99	1.2	this work
$Cu_2(L_2)N_3$	246	2.04	3.5	this work
$Cu2(L4)N3$	350 (81%)	1.92		this work
	49 (19%)	1.86		
Cu ₂ (L ₂)pyz	394	2.10	1.6	this work
Cu ₂ (L ₄)pyz	782	2.31		this work
Cu ₂ (L ₃)pyz	diamag			12
Cu ₂ (L ₄)pyz	716	2.00	1.3	12
$Cu2(L5)pyz$ 457		2.20		5

 $a_{\text{pyz}} = \text{pyrazolate}, L_5 = 2,6-bis(salicylidene amino)methyl}-4$ methylphenol.

also when the endogenous bridge contains the more flexible alkoxy-chain. One possible explanation for the latter is that the extent of anti-ferromagnetic coupling between metal centres via bridging ligands decreases as any electron density is removed from the bridging atoms [10]. Such a system would arise in complexes derived from L_1 and L_2 where the bridging phenolate contains an electron-withdrawing substituent in the para-position.

The flexible nature of the ligand, L_4 , is demonstrated in the X-ray crystal structures of the compounds 3 ($X = OH$ and $X = pyrazolate$) (Figs. 1 and 2). The ligand can accommodate both μ -1.1- and μ -1,2- bridges and the Cu-Cu separation increases from 3.00 Å in 3 (X = OH) to 3.35 Å in 3 (X = pyrazolate). In the pyrazolate complex there are two discrete molecules in the unit cell; the average $Cu-O-Cu$ angle is 119° , the average folding angle (ϕ) [11] is 36.8° and the copper atoms have clear tetrahedral distortions. A recent communication concerning copper II complexes of binucleating ligands derived from 1,n-diamino-alcohols suggests that severe bending of the ligand with accompanying reduction of the $Cu-O-Cu$ angle is noted where a trend towards ferromagnetism occurs [11]. Our results contrast with these observations but parallel those reported by Mazurek *et al.* [12] who, in related systems, have noted that it is a distortion from trigonal-planar towards pyramidal bonding around the endogenous-O that leads to a less negative J value. The sum of the three angles around the endogenous-O in 3 (X = pyrazolate) is 358°, indicative of a trigonally based geometry, and the high J value recorded for this compound is in accord with the above concept.

The best fit for the magnetic data concerning $Cu₂(L₄)N₃$ is obtained by considering the sample to be a mixture of two species; the reproducibility of the data was confirmed by using different samples. For the major component (\sim 81%), 2J = -350 cm⁻¹ and $g = 1.92$; for the minor component (~19%), $2J =$ -49 cm⁻¹ and $g = 1.86$. Kahn *et al*, have established that in μ -azido complexes an azido-group which bridges two copper atoms in an end-on $(\mu-1,1)$ fashion favours a triplet ground state (ferromagnetic interaction) whereas an end-to-end $(\mu-1,3-)$ mode

Fig. 1. Molecular structure of 3 ($X = OH$).

leads to a singlet ground state (and α singlet ground state (antiferromagnetic ground state α ids to a singlet ground state (antiferromagnetic interaction) $[13]$. In a structurally defined binuclear $copper(II)$ complex derived from 4, and having endogenous phenoxo- and exogenous $(\mu-1,1-)$ -azido bridges an observed 2J value of -34.8 cm⁻¹ has been interpreted to show a weakened antiferromagnetic coupling between the metal centres [14]. The μ -1,1azido bridge is believed to exert a ferromagnetic stabilisation strong enough to lower the overall antiferromagnetic coupling to the value shown. Since no substantial lowering of 2J is noted for $Cu_2(L_1)N_3$, $Cu_2(L_2)N_3$ or the major component of $Cu_2(L_4)N_3$ a μ -1,3-azido bridge is proposed as present in these molecules. For the minor component of $Cu_2(L_4)N_3$ a μ -1,1-azido bridge would exert a ferromagnetic contribution producing the $2J$ value given in Table I. The ability of $[Cu_2(L_4)]$ to host either μ -1,1- or μ -1,3- bridges in the azide complex is a further indication of the enhanced flexibility of the systems.

We thank the SERC for a studentship to R.M., and the SERC and Royal Society for funds towards the purchase of a diffractometer.

- 1 R. Robson, *Aust. J. Chem., 23,* 2217 (1970).
- 2 D. E. Fenton, Adv. Inorg. Bioinorg. Mech., 2, 187 (1983).
- 3 N. A. Bailey, D. E. Fenton, J. Lay, P. B. Roberts, J. M. Latour and D. Limosin, J. Chem. Soc., Dalton Trans., in press.
- *4 G.* L. Woolery, L. Powers, M. Winkler, E. I. Solomon and T. G. Spiro, *J. Am. Chem. Sot., 106, 86* (1984).
- 5 W. Mazurek, A. M. Bond, K. S. Murray, M. J. O'Connor and A. G. Wedd, *Inorg. Chem., 24, 2484 (1985).*
- *6 N.* A. Bailey, D. E. Fenton, J. M. Latour, R. Moody and P. J. Scrimshire, *Inorg. Chim. Acta*, 124, L1 (1986).
- 7 R. Moody, *Ph.D. Thesis,* University of Sheffield, 1985.
- 8 J. Nelson and S. M. Nelson, J. *Chem. Sot. A.,* 1597 (1969).
- 9 W. D. McFadyen, R. Robson and H. Schaap, *Inorg. Chem., II, 1777* (1972).
- 10 P. J. Hay, J. C. Thibeault and R. S. Hoffman, J. *Am. Chem. Sot., 97, 4884* (1975).
- 11 R. J. Butcher, G. Diven, G. Erickson, G. M. Mockler and E. Sinn,Znorg. *Chim. Acta, 123, L17* (1986).
- 12 W. Mazurek. B. J. Kennedy, K. S. Murray, M. J. O'Connor, J. R. Rodgers, M. R. Snow, A. G. Wedd and P. R. Zwack, *Inorg. Chem., 24, 3258 (1985)*
- *13 0.* Kahn, S. Sikorov, J. Gouteron, S. Jeannin and Y. Jeannin, *morg. Chem., 22, 2877* (1983).
- 14 M. L. Boillot. O. Kahn. C. J. O'Connor, J. Gouteron S. Jeannin and Y. Jeannin, *J. Chem.' Sot., Chem. Commun., 178* (1985).